

Pharmacology

Biochemical

Biochemical Pharmacology 61 (2001) 811-816

The effect of high molecular phospholipase A₂ inhibitors on 3T6 fibroblast proliferation

Teresa Sanchez, Juan J. Moreno*

Department of Physiology, Faculty of Pharmacy, Barcelona University, E-08028 Barcelona, Spain

Received 24 March 2000; accepted 27 September 2000

Abstract

Recently, we suggested that arachidonic acid and/or its cyclooxygenase pathway metabolites may be involved in regulating 3T6 fibroblast proliferation. In the present study we evaluate the role of high-molecular phospholipase A_2 (PLA₂) enzymes in the 3T6 fibroblast growth. Our results demonstrate that the cytosolic PLA₂ inhibitor, arachidonyl trifluoromethylketone and the cytosolic calcium-independent PLA₂ (iPLA₂) inhibitor, bromoenol lactone, decrease arachidonic acid release and prostaglandin E_2 production in 3T6 fibroblast cultures stimulated by fetal calf serum. These effects were correlated with the impairment of 3T6 fibroblast proliferation and DNA synthesis at the S/G₂ boundary, which prolongs the S phase. These data suggest a role of iPLA₂ in the control of 3T6 fibroblast growth. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Cell growth; Phospholipase A2; Arachidonic acid; Prostaglandins; Bromoenol lactone; Arachidonyl trifluoromethylketone

1. Introduction

Considerable amounts of arachidonic acid are found esterified in the membranes of mammalian cells and later released via phospholipase A₂ (E.C. 3.1.1.4, PLA₂ hydrolysis of the acyl bond at the sn-2 position [1]. Then, free intracellular arachidonic acid (AA) can be metabolized by prostaglandin H endoperoxide synthases (cyclooxygenases) [2] to produce prostanoids, the predominant AA metabolites synthesized by fibroblasts [3].

PLA₂ comprises a large superfamily of distinct enzymes that exhibit different substrate specificity, cofactor requirement, and subcellular localization [4]. Type II (14-kDa), a secreted PLA₂ form is well characterized and known to exist in both an extracellular form in inflammatory fluids [5] and in a cell-associated form [6]. The cytosolic 85-kDa PLA₂ (cPLA₂) is structurally distinct and, unlike the 14-kDa PLA₂, shows a preference for AA in the sn-2 position of

The AA metabolites appear to have an important but yet undefined role in growth-dependent signaling pathways. Moreover, AA and eicosanoids serve as intermediates in growth factor signaling pathways, and AA and eicosanoids are effectors and targets for second-messenger interaction [11]. Furthermore, most tumor cells produce AA metabolites, which modulate a wide range of biological effects that induce growth and invasiveness of tumors [12]. Thus, we recently suggested that AA and/or its cyclooxygenase pathway metabolites may be involved in regulating cellular proliferation of 3T6 fibroblasts [13–15]. The present study attempted to evaluate the role of high-molecular PLA₂ enzyme inhibitors in 3T6 fibroblast proliferation. Our results demonstrate that a cPLA₂ and/or iPLA₂ inhibitors decreases

nyl trifluoromethylketone; PGE2, prostaglandin E2

0006-2952/01/\$ – see front matter © 2001 Elsevier Science Inc. All rights reserved. PII: S0006-2952(01)00555-X

cellular phospholipids and is regulated by physiological intracellular calcium concentrations and phosphorylation [7,8]. Recently, an 80-kDa calcium-independent cytosolic PLA₂ (iPLA₂) was identified in macrophages. This enzyme shares some characteristics with secreted PLA₂ and others with cPLA₂ and may serve as a housekeeping enzyme involved in the remodeling of membrane phospholipids [9]. These enzymes are induced by inflammatory cytokines and growth factors, and they influence cellular AA release and the subsequent eicosanoid production [10]. However, their contribution to the regulation of cell proliferation has not been examined.

^{*} Corresponding author. Tel.: $+34\ 93\ 402\ 4505$; fax: $+34\ 93\ 402\ 18$ 96.

E-mail address: moreno@farmacia.far.ub.es (J.J. Moreno).

Abbreviations: AA, arachidonic acid; PLA₂, phospholipase A₂; cPLA₂, cytosolic phospholipase A₂; iPLA₂, calcium-independent phospholipase A₂; FCS, fetal calf serum; BEL, bromoenol lactone; AACOCF₃, arachido-

AA release and prostaglandin E_2 production in 3T6 fibroblast cultures. These effects were correlated with the impairment of DNA synthesis and 3T6 growth stimulated by fetal calf serum.

2. Materials and methods

2.1. Materials

RPMI 1640, fetal calf serum (FCS), penicillin G, streptomycin and trypsin/EDTA were purchased from Life Technologies. [5,6,8,9,11,12,14,15-³H]AA (180–240 Ci/mmol) and [methyl-³H]thymidine (20 Ci/mmol) were obtained from Du Pont-New England Nuclear. Propidium iodide, RNase and manoalide were supplied by Sigma Chemical Co. Bromoenol lactone (BEL), an iPLA₂ inhibitor, and arachidonyl trifluoromethylketone (AACOCF₃), an non-selective inhibitor of high molecular weight PLA₂, were acquired from Alexis Corp. Antibodies directed against cPLA₂ and iPLA₂ were from Santa Cruz Biotechnology Inc. and Cayman Chemicals Co., respectively. Flosulide, an cyclooxygenase-2 inhibitor, was kindly provided by Dr. J. Queralt. All other reagents were of analytical grade.

2.2. Cell culture

Murine 3T6 fibroblasts (ATCC CCL96) were grown and maintained as previously described [15]. Thus, fibroblasts were grown in RPMI 1640 containing 10% FCS, and penicillin (100 U/mL) and streptomycin (100 μ g/mL). Cells were harvested with trypsin/EDTA and passed to tissue-culture plates with a surface area of 5 cm²/well (tissue-culture cluster 12; Costar). Cell cultures were maintained in a temperature- and humidity-controlled incubator at 37° with 95% air-5% CO₂. Cell viability tests were performed using the trypan blue exclusion test.

2.3. SDS-polyacrylamide gel electrophoresis/immunoblotting

Proteins from cell lysates (10⁵ cells) were resolved by electrophoresis on SDS-PAGE (7.5%) gels under reducing conditions. The separated proteins were electroblotted onto nitrocellulose membranes using a Miniprotean II system (BioRad), according to the manufacturer's instructions. The membranes were probed with cPLA₂ and iPLA₂ antibodies (1:2000) and visualized using the ECL Western blot analysis system (Amersham Pharmacia, Biotech).

2.4. Incorporation and release of [³H]AA

After a period of fibroblast replication (3–4 days) and a period of FCS starvation (6 hr), the medium was removed and replaced with 0.5 mL RPMI 1640 containing 0.1% fatty acid-free BSA and 0.1 μ Ci [³H]AA for 24 hr. [³H]AA

incorporation was performed in preconfluent cultures $(1000-3000 \text{ cells/cm}^2)$. Cells were then washed three times with medium containing 0.5% BSA to remove unincorporated [3 H]AA. After a study period, the medium was removed for analysis of radioactivity released. The amount of [3 H]AA released into the medium was expressed as a percentage of cell-incorporated [3 H]AA, which was determined in solubilized cells. Background release from untreated cells $(8 \pm 1\% \text{ of } [^3\text{H}]\text{AA} \text{ incorporated})$ was subtracted from all data

2.5. Measurement of prostaglandin E_2 levels

An aliquot of culture medium (0.25 mL) was acidified with 1 mL of 1% formic acid. Prostaglandin E_2 was extracted in ethyl acetate (5 mL), and, after the aqueous phase was discarded, the organic phase was evaporated under a stream of nitrogen. The overall recovery for the extraction procedure was established by including [3 H]PGE $_2$ and was found to be 87 \pm 2%. PGE $_2$ levels were determined using a PGE $_2$ -monoclonal enzyme immunoassay kit (Cayman Chemicals Co.), following the manufacturer's protocol.

2.6. Cell growth

The influence of treatments was assessed on 3T6 fibroblasts plated at 3000 cells/well in 12-well plates and cultured for 3 days in RPMI 1640-supplemented with 10% FCS in presence of different treatments. Finally, the cells were washed, trypsinized, and counted. Medium plus treatments were changed each day to avoid the possible breakdown of the drugs.

2.7. Analysis of DNA synthesis

DNA synthesis was measured by a [³H]thymidine incorporation assay. This involved culturing 3T6 fibroblasts in 96-well plates (Costar) in RPMI 1640 with 10% FCS at a density of 400 cells/well. Six hours later, cells were incubated with the drugs and [³H]thymidine (1 μCi/well) for 24 hr. Then, [³H]thymidine-containing media were aspirated, and cells were washed three times with medium containing 0.5% BSA to remove unincorporated [³H]thymidine. Finally, cells were overlaid with 1% Triton X-100, and then cells were scraped off the dishes. Finally, radioactivity present in the cell fraction was measured by scintillation counting, using a Packard Tri-Carb 1500 counter.

2.8. Cell cycle analysis

For analysis of cell cycle distribution, treated 3T6 fibroblasts, were trypsinized, fixed in ethanol, and suspended in a solution containing 0.1% sodium citrate, 0.1% Triton X-100, and 50 μ g/mL propidium iodide and treated for 30 min at 37° with 10 μ g of RNase A. The stained cells were analyzed by a FACScan flow cytometer (Becton Dickin-

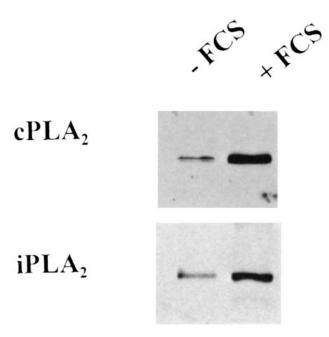


Fig. 1. Western blot analysis of $cPLA_2$ and $iPLA_2$ in cultured murine 3T6 fibroblast in absence (24 hr) or presence of FCS (10%). Western blot shown is representative of three experiments with similar results.

son), and the distribution of cells at each stage of the cycle was determined.

2.9. Statistical analysis

Results are expressed as means \pm SEM. Differences between control cultures and treated cultures were tested by using either Student's *t*-test or one-way analysis of variance followed by the least significant difference test as appropriate.

3. Results

In order to determine the presence of cPLA₂ and iPLA₂ in 3T6 fibroblasts, we performed a Western-blotting analysis using specific antibodies. As shown in Fig. 1, antibodies recognized the presence of both enzymes.

Exposure to serum produced activation of PLA₂ that was manifested by [3 H]AA release (Fig. 2). AACOCF₃, a trimethylketone analogue of AA recently shown to strongly inhibit 85 kDa PLA₂ but not the 14-kDa form [16], significantly inhibited this [3 H]AA mobilization in 3T6 fibroblast cultures ($\text{IC}_{50} \sim 1 \, \mu\text{M}$) (Fig. 2). Recently, a selective iPLA₂ inhibitor BEL has been developed [17]. This drug also significantly reduced [3 H]AA release induced by serum (3 C₅₀ $\sim 2.5 \, \mu\text{M}$) (Fig. 2). Serum also increased the formation of PGE₂ by 3T6 fibroblasts. As indicated both the cPLA₂ inhibitor, AACOCF₃ and the iPLA₂ inhibitor, BEL produced significant decreases in PGE₂ in serum-supplemented media (Fig. 3), suggesting that both enzymes,

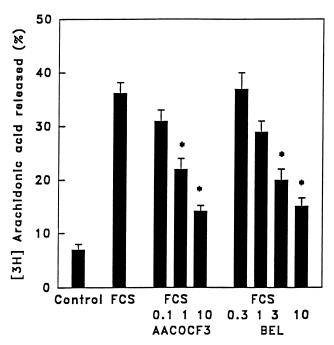


Fig. 2. Effect of AACOCF₃ (0.1–10 μ M) and BEL (0.3–10 μ M) on [³H]AA release induced by FCS. Fibroblasts prelabeled with [³H]AA were incubated with FCS (10%) in absence or presence of PLA₂ inhibitors for 2 hr. Data are the mean \pm SEM (N = 5–6). *P < 0.05 vs non-treated cells.

cPLA₂ and iPLA₂, contribute to AA release and the subsequent prostaglandin formation induced by FCS. However, these effects were significantly attenuated by the exogenous addition of AA (20 μ M) to the media (Table 1).

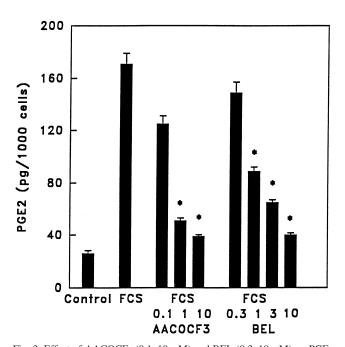


Fig. 3. Effect of AACOCF₃ (0.1–10 μ M) and BEL (0.3–10 μ M) on PGE₂ production stimulated by FCS. Fibroblasts were incubated with FCS (10%) in absence or presence of PLA₂ inhibitors for 2 hr. Data are the mean \pm SEM (N = 4–5). *P < 0.05 vs non-treated cells.

Table 1
Effect of AACOCF₃ and BEL on [³H]AA release, PGE₂ production, and 3T6 growth induced by FCS

	% [³ H]AA released	PGE_2	3T6 growth $(\times 10^3)$
Control	8.2 ± 1.3	26 ± 3	
FCS	35.8 ± 2.1	162 ± 11	13.1 ± 1.2
FCS + AA		$211 \pm 9*$	14.2 ± 1.1
FCS + AACOCF ₃	$15.1 \pm 1.1*$	$38 \pm 3*$	$3.9 \pm 0.3*$
FCS + AACOCF ₃		112 ± 6**	$7.6 \pm 0.4**$
+ AA			
FCS + BEL	$19.7 \pm 2.3*$	62 ± 5*	$7.8 \pm 0.4*$
FCS + BEL		138 ± 9**	$9.7 \pm 0.3*$
+ AA			

3T6 fibroblasts were maintained without FCS overnight. Then, we added FCS (20%) for 2 h. AACOCF3 (10 $\mu\text{M})$ and BEL (3 $\mu\text{M})$ were added to the medium 30 min before FCS, and [³H]AA released and PGE2 (pg/1000 cells) were measured. In cell growth experiments, 3000 cells/well were incubated with FCS (10%) in presence or absence of AACOCF3 (10 $\mu\text{M})$, BEL (3 $\mu\text{M})$ and AA (20 $\mu\text{M})$ for 3 days. All data are the mean \pm SEM from two experiments performed in triplicate.

3T6 fibroblast growth induced by FCS was also affected by AACOCF₃ in a dose-dependent manner. Recall that cells were seeded at a density of 3000 cells/well on day 0 and that by day 3, the cell number had increased 4.7-fold to 13980 \pm 660 (Fig. 4). Our results show a dose-dependent inhibition of fibroblast growth induced by AACOCF₃ treatment (IC₅₀ \sim 1 μ M), and that 10 μ M AACOCF₃ completely inhibited

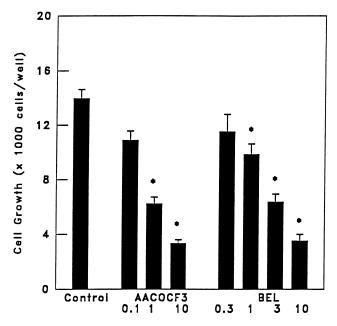


Fig. 4. High-molecular-weight PLA₂ inhibitors reduce 3T6 fibroblast proliferation induced by FCS. Cells were incubated with FCS (10%) in presence or absence of AACOCF₃ (0.1–10 μ M) or BEL (0.3–10 μ M) for 3 days. Data are the mean \pm SEM (N = 5–6). *P < 0.05 vs non-treated cells.

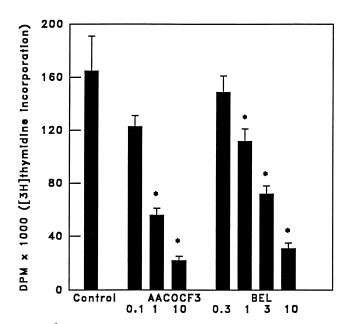


Fig. 5. [3 H]Thymidine incorporation induced by FCS was inhibited by AACOCF₃ and BEL. Data are the mean \pm SEM (N = 3–4). * 4 P < 0.05 vs non-treated cells. Dpm, disintegrations per minute.

3T6 fibroblast proliferation. BEL also significantly reduced 3T6 fibroblast growth in a dose-dependent manner ($\text{ic}_{50} \sim 3 \mu\text{M}$), and blocked 3T6 growth at 10 μM (Fig. 4).

Serum produced a significant increase in the rate of [³H]thymidine incorporation in 3T6 fibroblasts. AACOCF₃ and BEL inhibited DNA synthesis in a dose-dependent manner, measured as [³H]thymidine incorporation (Fig. 5).

The trypan blue exclusion test indicated that the AACOCF₃- and BEL-mediated reduction of fibroblast growth was not due to cellular toxicity. Moreover, a morphologic examination demonstrated that the drug treatments produced no changes in cell structure (data not shown).

Interestingly, the effect of AACOCF₃ and BEL on 3T6 fibroblast growth was significantly attenuated by addition of AA to the media (Table 1). Moreover, 3T6 fibroblasts recovered their growth rate when AACOCF₃ was removed from the media (Fig. 6). Similar data were obtained with BEL, although the recovery of the growth rate appeared latter than when we removed AACOCF₃.

Fibroblasts were collected and stained with propidium iodide after 3 days of exposure to the inhibitors to determine the effect of treatments on the cell cycle. Fig. 7 provides data from a representative experiment that show that AACOCF₃ and BEL caused the impairment of the G₁ peak and the increase of cells in S phase. However, manoalide, a secreted PLA₂ inhibitor [18], and flosulide, a cyclooxygen-ase-2 inhibitor [19] did not modify 3T6 fibroblast cycle. These changes were not due to the induction of cell death and were fully reversible when we removed PLA₂ inhibitors (data not shown).

^{*} P < 0.05 vs non-treated with PLA₂ inhibitors.

^{**} P < 0.05 vs treatment without AA.

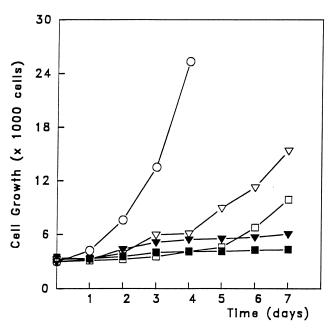


Fig. 6. The inhibition of $AACOCF_3$ or BEL on fibroblast growth were reversible. Cells were treated with $AACOCF_3$ (10 μ M, \blacktriangledown) or BEL (10 μ M, \blacksquare) for 7 days or removed after 2 days (\heartsuit , \square) in presence of 10% FCS. Control cells were cultured in presence of 10% FCS (\bigcirc). Data are the mean of 3–4 results.

4. Discussion

AA release is an early event in the mitogenic process of a number of growth factors and the subsequent cell proliferation. This mobilization of AA from membrane phospholipids occurs mainly by two pathways: hydrolytic cleavage

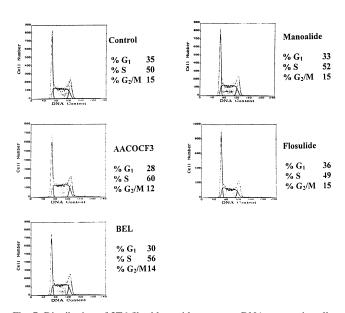


Fig. 7. Distribution of 3T6 fibroblast with respect to DNA content in cells cultured with FCS (10%) for 2 days or FCS in presence of AACOCF $_3$ (10 $\mu M)$, BEL (10 $\mu M)$, manoalide (0.5 $\mu M)$ or flosulide (10 $\mu M)$. This experiment is representative of three experiments with similar results.

of the *sn*-2 position of the glycerophospholipid backbone catalyzed by PLA₂, or activation of phospholipase C, which cleaves the phosphate-ester bond, and subsequent hydrolysis of diacylglycerol produced by diacylglycerol lipase. In 3T6 fibroblasts, stimulated AA release through PLA₂ has been shown to be required for mitogenesis. Moreover, these previous studies demonstrated that nonselective PLA₂ inhibitors reduce 3T6 fibroblast proliferation [13,15].

Owing to the central role of cPLA₂ in AA signaling, the design of cPLA₂ inhibitors is an area of great interest. AACOCF₃ is a reversible cPLA₂ inhibitor that also inhibits cyclooxygenases [16]. Unfortunately, AACOCF₃ also potently inhibits iPLA₂ [20] because both cPLA₂ and iPLA₂ appear to use a central Ser for catalysis and, probably, similar catalytic mechanisms. There is one way to ascertain whether the inhibitory effects of AACOCF₃ result from cPLA₂ or iPLA₂. This involves the parallel use of BEL, a selective inhibitor of iPLA₂ [17]. Thus, if a given response is inhibited by AACOCF₃ and by BEL, this would indicate the involvement of iPLA₂ [21].

Our results suggest that BEL-sensitive iPLA₂ may be, at least partially, implicated in the AA release, PGE₂ generation and cell growth stimulated by FCS in 3T6 fibroblast cultures, in agreement with recent studies with iPLA₂ inhibitors including BEL that suggested the contribution of iPLA₂ to stimulus-induced AA liberation [22,23]. However, further studies will be necessary to understand the precise role of cPLA₂ and iPLA₂ on FCS-stimulated AA release and 3T6 fibroblast growth.

Interestingly, FACS-scan analysis suggests that the reduction in cell growth following AACOCF₃ and BEL treatments results from an impairment of the percentage of cells in G_1 and the enhancement of cells in S phase whereas manoalide and flosulide, treatments that partially reduced 3T6 growth [15], did not induce changes.

The mechanism by which high-molecular-weight PLA₂ influences 3T6 fibroblast proliferation remains to be determined. However, cyclooxygenase inhibitors such as ketoprofen or indomethacin had effect on 3T6 fibroblast growth [15,24], indicating that the high-molecular-weight PLA₂dependent effect on proliferation may be mediated by AA and/or prostaglandins. Thus, when fibroblasts were treated with exogenous AA, the reduction in growth rate produced by AACOCF₃ or BEL was significantly attenuated. This action may be related to the capacity of AA to stimulate c-fos, c-jun, and/or mitogen-activated protein kinase [25, 26]. Additionally, recent reports indicate that the release of AA by PLA₂ is accompanied by the formation of lysolipids, and lysophosphatidic acid, lysophosphatidylinositol and lysophosphatidylcholine stimulate mitogen-activated protein kinases and proliferation [27,28]. Moreover, these lysolipids are precursors of glycerophosphoinositides, which show evidence of being accumulated in ras-transformed cells.

In summary, we have demonstrated that $AACOCF_3$ and BEL block 3T6 fibroblast proliferation and DNA synthesis at the S/G_2 boundary, thus prolonging the S phase. These

data suggest a role of $iPLA_2$ in the control of 3T6 fibroblast growth.

Acknowledgments

T. Sanchez is a recipient of a predoctoral fellowship from the Autonomous Government of Catalonia. This study was supported by the Spanish Ministry of Education (DGES PM97-0110 and PM98-0191). FACS-analyses were performed at the Servéis Científic-tècnics of the Barcelona University. We are very grateful to Robin Rycgroft for valuable assistance in the preparation of the manuscript.

References

- Waite M. Phospholipases In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes. New York: Elsevier Science Publishing Co., 1996. p. 211–36.
- [2] Smith WL, DeWitt DL. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroideal anti-inflammatory drugs. Semin Nephrol 1995;15:179– 94
- [3] Mayer B, Rauter Z, Zenzmaier E, Gleispack H, Esterbauer H. Characterization of lipoxygenase metabolites of arachidonic acid in cultured human fibroblasts. Biochim Biophys Acta 1984;795:151–61.
- [4] Dennis EA. The growing phospholipase A₂ superfamily of signal transduction enzymes. Trends Biochem Sci 1997;22:13057–60.
- [5] Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB. Structure and properties of a human nonpancreatic phospholipase A₂. J Biol Chem 1989;264:5768–75.
- [6] Kramer RM, Johansen B, Hession C, Pepinsky R. Structure and properties of a secretable phospholipase A₂ from human platelets In: Wong PYK, Dennis EA, editors. Phospholipase A₂. New York: Plenum Publishing Corp., 1990. p. 35–53.
- [7] Clark JD, Milona N, Knopf JL. Purification of a 110-kilodalton cytosolic phospholipase A₂ from the human monocytic cell line U937. Proc Natl Acad Sci USA 1990;87:7708-12.
- [8] Clark JD, Schievella AR, Nalefski EA, Lin LL. Cytosolic phospholipase A₂. J Lipid Mediat Cell Signal 1995;12:83–117.
- [9] Balsinde J, Dennis EA. Function and inhibition of intracellular calcium independent phospholipase A₂. J Biol Chem 1997;272:16069-72.
- [10] Murakami M, Kambe T, Shimbara S, Kudo I. Functional coupling between various phospholipases A₂ and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 1999; 274:3103–15.
- [11] Di Marzo V. Arachidonic acid and eicosanoids as targets and effectors in second messenger interactions. Prostaglandins Leukotrienes Essent Fatty Acids 1995;53:239–54.
- [12] Reich R, Martin GR. Identification of arachidonic acid pathways required for the invasive and metastatic activity of malignant tumor cells. Prostaglandins 1996;51:1–17.

- [13] Lloret S, Torrent M, Moreno JJ. Proliferation-dependent changes in arachidonic acid mobilization from phospholipids of 3T6 fibroblasts. Pflügers Archiv Eur J Physiol 1996;432:655–62.
- [14] Moreno JJ. Regulation of arachidonic acid release and prostaglandin formation by cell-cell adhesive interactions in wound-repair. Pflügers Archiv Eur J Physiol 1997;433:351–6.
- [15] Martinez J, Sanchez T, Moreno JJ. Role of prostaglandin H synthase-2-mediated conversion of arachidonic acid in controlling 3T6 fibroblast growth. Am J Physiol 1997;273:C1466–71.
- [16] Riendeau D, Guay J, Weech PK, Laliberte F, Yergey J. Arachidonyl trifluoromethylketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J Biol Chem 1994;269:15619-24.
- [17] Hazen SL, Zupan LA, Weiss RH, Getman DP, Gross RW. Suicide inhibition of canine myocardial cytosolic calcium-independent phospholipase A₂. Mechanism-based discrimination between calcium-dependent and -independent phospholipase A₂. J Biol Chem 1991;266: 7227–32.
- [18] Jacobs RS, Culver P, Langdon R, O'Brien T, White S. Some pharmacological observations in marine natural products. Tetrahedron 1985;41:981–4.
- [19] Klein TN, Sing RM, Pfeilschifter J, Ullrich V. Selective inhibition of cyclooxygenase 2. Biochem Pharmacol 1994;48:1605–10.
- [20] Lio YC, Reynolds LJ, Balsinde J, Dennis EA. Irreversible inhibition of Ca²⁺-independent phospholipase A₂ by methyl arachidonyl fluorophosphonate. Biochim Biophys Acta 1996;1302:55-60.
- [21] Balsinde J, Dennis EA. Distinct roles in signal transduction for each of the phospholipase A₂ enzymes present in P388D1 macrophages. J Biol Chem 1996;271:6758-65.
- [22] Gross RW, Rudolph AE, Wang J, Sommers CD, Wolf MJ. Nitric oxide activates the glucose-dependent mobilization of arachidonic acid in macrophages-like cell line (RAW 264.7) that is largely mediated by calcium-independent phospholipase A₂. J Biol Chem 1995; 270:14855–8.
- [23] Atsumi G, Tajima M, Hadano A, Nakatani Y, Murakami M, Kudo I. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A₂ but not cytosolic phospholipase A₂, which undergoes proteolytic inactivation. J Biol Chem 1998;273:13870-7.
- [24] Sanchez T, Moreno JJ. Ketoprofen S(+) enantiomer inhibits prostaglandin production and cell growth in 3T6 fibroblast cultures. Eur J Pharmacol 1999;370:63–7.
- [25] Falasca M, Iurisci C, Carvelli A, Sacchetti A, Corda D. Release of the mitogen lysophosphatidylinositol from H-Ras-transfected fibroblasts: a possible mechanism of autocrine control of cell proliferation. Oncogene 1998;16:2357–65.
- [26] Sellmayer A, Danesch U, Weber PC. Effects of different polyunsaturated fatty acids on growth-related early gene expression and cell growth. Lipids 1996;31:537–40.
- [27] Corda D, Falasca M. Glycerophosphoinositols as potential markers of ras-induced transformation and novel second messengers. Anticancer Res 1996;16:1341–50.
- [28] Wojtaszek PA, Van Putten V, Nemenoff RA. Activation of a novel form of phospholipase A₂ during liver regeneration. FEBS Lett 1995; 367:228–32.